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1.  Introduction

Recent developments in computer science and technology have improved the feasibility of a data-driven 
interpretation of medical images. As such, quantitative imaging applications are quickly becoming standard-
of-care in modern cancer medicine. Leading this paradigm shift is the emerging field of radiomics. Radiomics 
focuses on translating images into structured data to identify computational biomarkers (Kumar et al 2012, Aerts 
et al 2014, Gillies et al 2016). Computed tomography (CT) based radiomic analysis of non-small cell lung cancer 
(NSCLC) has been an attractive research topic in recent years (Aerts et al 2014, Huang et al 2016, Chaddad et al 
2017, Chen et al 2017, Lee et al 2017, Timmeren et al 2017, Velden et al 2016). In particular, the association between 
radiomic features and stereotactic body radiation therapy (SBRT) outcomes has demonstrated promising results 
(Huynh et al 2016, Zhang et al 2016, Li et al 2017a, 2017b, Yu et al 2017, Oikonomou et al 2018). SBRT is quickly 
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Abstract
The purpose of this work was to investigate the potential relationship between radiomic features 
extracted from pre-treatment x-ray CT images and clinical outcomes following stereotactic body 
radiation therapy (SBRT) for non-small-cell lung cancer (NSCLC).

Seventy patients who received SBRT for stage-1 NSCLC were retrospectively identified. The tumor 
was contoured on pre-treatment free-breathing CT images, from which 43 quantitative radiomic 
features were extracted to collectively capture tumor morphology, intensity, fine-texture, and 
coarse-texture. Treatment failure was defined based on cancer recurrence, local cancer recurrence, 
and non-local cancer recurrence following SBRT. The univariate association between each radiomic 
feature and each clinical endpoint was analyzed using Welch’s t-test, and p-values were corrected for 
multiple hypothesis testing. Multivariate associations were based on regularized logistic regression 
with a singular value decomposition to reduce the dimensionality of the radiomics data.

Two features demonstrated a statistically significant association with local failure: Homogeneity2 
(p  =  0.022) and Long-Run-High-Gray-Level-Emphasis (p  =  0.048). These results indicate that 
relatively dense tumors with a homogenous coarse texture might be linked to higher rates of 
local recurrence. Multivariable logistic regression models produced maximum AUC values of 
0.72 ± 0.04, 0.83 ± 0.03, and 0.60 ± 0.04, for the recurrence, local recurrence, and non-local recurrence 
endpoints, respectively.

The CT-based radiomic features used in this study may be more associated with local failure than 
non-local failure following SBRT for stage I NSCLC. This finding is supported by both univariate and 
multivariate analyses.
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becoming a standard treatment option for patients with early stage NSCLC, and therefore radiomics SBRT 
applications are highly relevant.

Radiomics has demonstrated prognostic value in predicting lung SBRT clinical outcomes, most notably for 
different aspects of patient survival (Huynh et al 2016, Zhang et al 2016, Li et al 2017a, 2017b, Yu et al 2017, 
Oikonomou et al 2018). However, fewer studies have focused on SBRT local failure rates. In part, this may be due 
to a generally low event-frequency of treatment failure in early stage cancers. Nevertheless, high local control has 
been a major rationale for SBRT. In fact, prior major prospective clinical trials have typically focused on this end-
point with respect to patterns of failure (Timmerman et al 2010, Chang et al 2012, Videtic et al 2015). Identifying 
radiomic features predictive of local failure may facilitate more aggressive therapy through: (a) modification 
of treatment volumes, (b) novel dose escalation techniques, and (c) closer follow-up for patients potentially at 
high risk of recurrence. Similarly, radiomic features predictive of non-local failures may help to identify patients 
at risk for metastatic disease progression who may benefit from adjuvant therapies after SBRT. In contrast to 
patient survival (which may be influenced by many different factors), radiomic prediction of local versus non-
local failure may lead to more tangible implications within current SBRT workflows. The purpose of this study 
was to investigate the potential relationship between pre-treatment radiomic features and clinical outcomes, 
particularly local failure, following SBRT for NSCLC. Both univariate and multivariate analyses were performed.

2.  Methods

2.1.  Patient characteristics and clinical outcomes
This study was approved by the Institutional Review Board for radiomic analysis of stage I NSCLC patients treated 
with SBRT at Duke University between 2007 and 2014 (n  =  95). Patients were excluded from the study if they: 
(a) had been previously treated for lung cancer (n  =  19), or (b) presented with multiple synchronous primary 
cancers (n  =  6). Baseline characteristics, treatment parameters, and follow-up clinical findings of the remaining 
70 patients were retrospectively entered into a web-based application database. The median patient age was 74 
years, there were 35 males to 35 females. Patients were treated to a mean dose of 51 Gy under a standard hypo-
fractionation scheme. Patient-specific treatment outcomes were scored according to figure 1, based on follow-up 
CT, PET/CT, and pathological confirmation. The mean follow-up time was 65 months. Local treatment failure 
was confirmed pathologically in 33% of patients, and confirmed via PET/CT in 100% patients. Specifically, 
treatment outcomes were categorized as follows:

	 •	�Failure (F ∈ {0, 1}): Cancer recurrence following treatment (n  =  21)

	○	� Local failure (LF ∈ {0, 1}): Cancer recurrence within 2 cm of the gross tumor volume (GTV) (n  =  6)
	○	� Non-local failure (nLF ∈ {0, 1}): Either regional or distant failure (n  =  15)

	 ■ �Regional failure (RF ∈ {0, 1}): Cancer recurrence within regional lymph nodes (n  =  5)

	 ■ �Distant failure (DF ∈ {0, 1}): Development of metastatic disease (n  =  10).

2.2.  CT image acquisition and tumor contouring
For each patient, pre-treatment x-ray CT images were acquired under free-breathing conditions. Images were 
acquired on either a GE Lightspeed CT scanner (160 slices, 0.8 mm in plane resolution, 2.5 mm slice thickness, 
120 kVp), or a Siemens Biograph mCT scanner (160 slices, 0.8 mm in plane resolution, 2 mm slice thickness, 
120 kVp), and reconstructed using an FBP reconstruction algorithm. Both scanners were calibrated using an 
identical QA protocol and phantom. On each image, the GTV was manually segmented using commercially 
available contouring software. This was done on each axial CT slice, and the results were merged into a single 3D 
volume. All contours were verified by an experienced physician and physicist prior to radiomic feature extraction.

2.3.  Radiomic feature extraction
Forty-three radiomic features were extracted from each GTV as potential biomarkers for NSCLC recurrence 
following SBRT. The resulting radiomic feature space was defined as the matrix

F =
(
fi,j

)
∈ R43×70,� (1)

where, the (i, j) th coordinate of F  represents the measured value of the ith radiomic feature as observed within 
the image of the jth patient’s GTV. For convenience, we define the jth patient’s radiomic feature vector as,

fj =
(
fi,j

)43

i=1
∈ R43, j = 1, 2, . . . , 70.� (2)
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A complete list of all 43 features that were used to construct equation (2) is shown in figure 2. Briefly, each can be 
classified into one of the following 4 classes:

	 •	� Intensity Features: Measure the overall density characteristics of a tumor. These features were defined 
based on the image’s gray level histogram. This is a probability density function (PDF) describing the 
frequency of gray-level occurrences in the image (Aerts et al 2014).

	 •	� Fine Texture Features: Capture small-scale heterogeneity within a tumor’s detailed, high-resolution 
structure (i.e. at the imaging system’s resolution-limit). These features were defined based on the image’s 
Gray-Level Co-occurrence Matrix (Haralick et al 1973). By measuring the frequency of co-occurring 
adjacent voxel pairs having the same intensity, this joint PDF describes small scale spatial gray level 
dependencies.

	 •	� Coarse Texture Features: Capture large-scale heterogeneity within a tumor’s approximate, low-
resolution structure. These features were defined based on the image’s Gray Level Run Length Matrix 
(Tang 1998). By measuring the frequency of run-lengths (i.e. the size of a set of consecutive voxels with the 
same grayscale intensity), this joint PDF describes large-scale spatial gray level dependencies.

	 •	� Morphological Features: Describe the overall 3D size and shape of a tumor.

As image texture is inherently scale-dependent, we chose to differentiate Fine Texture (small-scale) from 
Coarse Texture (large-scale). All texture calculations were performed in 13 directions corresponding to the axes-
of-rotation of a cubic voxel. This was done to approximate a rotationally invariant 3D system. Feature extraction 
was performed in 3D using our in-house radiomics software developed in MATLAB (Mathworks, Natick, MA). 
Prior to analysis, this in-house feature extraction system was validated based on comparisons to the open source 

Figure 1.  Cancer recurrence following SBRT. Different treatment failure scenarios were defined based on cancer recurrence both 
locally and non-locally.

Figure 2.  Radiomic features used in this analysis, color-coded by their class.

Phys. Med. Biol. 64 (2019) 025007 (9pp)
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software packages, CERR (Apte et al 2018) and IBEX (Zhang et al 2015). A complete list of features used in this 
study is presented in figure 2.

Given the 70 pairs of CT images and corresponding clinical outcomes, the following five datasets were con-
structed: A location unspecific failure dataset,

¶Ä
fj, yj = F( j)

ä©70

j=1
,� (3)

as well as four location-specific sub-datasets,
¶Ä

fj, yj = LF( j)
ä©70

j=1
,� (4)

¶Ä
fj, yj = RF( j)

ä©70

j=1
,� (5)

¶Ä
fj, yj = DF( j)

ä©70

j=1
,� (6)

¶Ä
fj, yj = nLF( j)

ä©70

j=1
,� (7)

where, fj ∈ R43 is the jth patient’s radiomic feature vector defined via equation  (2), and 

F( j) ∈ {0, 1} , LF( j) ∈ {0, 1} , RF( j) ∈ {0, 1} , DF( j) ∈ {0, 1}, and nLF( j) ∈ {0, 1} are the previously defined 
clinical endpoints associated with the jth patient’s cancer recurrence status.

2.4.  Univariate statistical feature analysis
Based on equations (3)–(7), the statistical association between individual radiomic features and each clinical 
endpoint was analyzed using Welch’s t-test (Welch 1947). All p-values were corrected for multiple hypothesis 
testing using the Bonferroni method (Bonferroni 1936). A corrected p-value �0.05 was considered statistically 
significant, indicating that the mean value of a particular feature’s distribution could differentiate a given clinical 
endpoint.

2.5.  Multivariate feature analysis
In this section, we investigate the multivariate association between the radiomics data and cancer recurrence 
using a regularized logistic regression model. As the number of features is relatively large compared to the 
number of patients, we chose to work in a truncated singular value decomposition (SVD) basis. SVD is a 
common matrix decomposition technique that is often used to reduce the dimensionality of a dataset by 
producing a set of uncorrelated, orthonormal bases. In the analyses that follow, each clinical endpoint (i.e. 
F ∈ {0, 1} , LF ∈ {0, 1} , RF ∈ {0, 1} , DF ∈ {0, 1}, and nLF ∈ {0, 1}) was treated independently as a separate 
analysis.

2.5.1.  Singular value decomposition
Each column vector of F  was zero-mean centered to ensure normalized units. An SVD transformation was 
subsequently performed on the feature space,

F =
k∑

i=1

σiuiv
T
i ,� (8)

where, ui and vi are the left-and-right singular vectors of F , respectively, and σi are the singular values of F . The 
vectors, ui, which are similarly known as Principal Components, provide a unique k-dimensional coordinate 
system for the data. Equation (8) was truncated to the first k leading terms to define a lower-dimensional feature 
space in the Principal coordinate axes, (u1, u2, · · · , uk). The jth patient’s radiomic feature vector was defined in 
this basis as,

uj =
(
ui,j

)n

i=1
∈ Rn, j = 1, 2, . . . , k; k < n = 43.� (9)

2.5.2.  Multivariate logistic regression
For each uj, the following logistic function was defined

gj = ϕ
(
wo + wTuj

)
, j = 1, 2, . . . , k,� (10)
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where,

ϕ (x) =
1

1 + e−x
,� (11)

and w is a weight vector with bias term, wo = 1. Given m input/output training pairs, w was optimized by 
minimizing a regularized cross-entropy loss function (Murphy 2012),

J (w) = argmin − 1

k

k∑
j=1

yjlog
[
gj

]
+
(
1 − yj

)
log

[
1 − gj

]
+ λ

n∑
i=1

w2
i� (12)

where, gj is the modeled response to the jth input according to equation (10), yj  is the ground-truth class 
associated with the jth patient according to equations (3)–(7), and λ > 0 is a regularization parameter. The 
parameter λ defines the number of non-zero components of w, and was determined during the training phase 
via cross-validation. Equation (12) was minimized as a batch process across the set of m input/output training 
pairs, using a standard conjugate gradient algorithm.

2.5.3.  Model performance evaluation
Model generalization was evaluated using a stratified Monte Carlo cross-validation approach with 25 iterations 
(Burman 1989). At each iteration, equations  (3)–(7) were each randomly partitioned into training (80%) 
and validation (20%) cohorts with approximately equal event ratios. Models were developed using only the 
training cohort based on equations (8)–(12), and were applied to the validation cohort. Results were pooled to 
construct receiver operating characteristic (ROC) curves, and the area under the curve (AUC) was used as the 
final model performance metric. To compare different AUC values, pair-wise p-values were calculated based 
on a permutation test with 250 iterations. Finally, as a quality check, the above methodology was performed on 
data classes that were artificially re-assigned a random binary value. In theory, such a scenario should result in 
AUC = 0.5. This step was implemented as a benchmark control to ensure that models were not grossly over-fit to 
the training data. In practice, modeling such a random distribution should result in AUC ≈ 0.5 (due to the noise 
in the data).

3.  Results

3.1.  Univariate feature analysis
Two radiomic features demonstrated a statistically significant univariate association with LF(+): Homogeneity 
2 (p  =  0.022) and Long-Run-High-Gray-Level-Emphasis (p  =  0.048). The former is a fine texture feature, while 
the latter is a coarse texture feature. These results indicate that relatively dense tumors with a homogenous coarse 
texture were often linked to higher rates of local recurrence. Box plots for each analysis is shown in figure 3. 
No such relationship was observed for the F(+), RF(+), DF(+), or nLF(+) cohorts, where all p-values lost their 
statistical significance following the Bonferroni correction.

3.2.  Multivariate feature analysis
Figure 4 summarizes the benchmark control results based on data classes that were artificially re-assigned a 
random binary value. The AUC of the randomized control data was close to the theoretical 0.5, and was found to 
be stable for all Principal Component cutoffs, k. When comparing the real SBRT data to the random control data, 
AUC values were found to be statistically significant for 1 � k � 6. Models developed based on the real SBRT 
data with (k � 7) principal components were found to be statistically no better than random guess.

Multivariable logistic regression models produced maximum AUC values of 0.72 ± 0.04, 0.83 ± 0.03, and 
0.60 ± 0.04, for the F(+), LF(+), and nLF(+) endpoints, respectively. These results are demonstrated in figure 5, 
and were produced with k = 2, k = 3, and k = 10 Principal Components, respectively. None of the RF(+) and 
DF(+) models were found to be statistically significant when compared to the combined nLF(+) model.

As summarized in figure 6, performance was sensitive to the number of Principle Components used in 
each model. A statistically significant AUC difference was found between the F(+), LF(+), and nLF(+) models 
for (1 < k < 6) Principal Components. However, when k � 6, AUC was found to be statistically insignificant 
between all models. In general, the performance of both the failure and local failure models is shown to decrease 
as (k > 5) → 10.

Phys. Med. Biol. 64 (2019) 025007 (9pp)
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4.  Discussion

Preliminary results shown in figures 3–6 indicate that radiomics has the potential to be used for personalized 
medicine. Applications of radiomics to SBRT are particularly intriguing, since SBRT is being increasingly 
considered as a standard treatment option for medically inoperable NSCLC patients with early stage disease. 
The ability to identify radiomic biomarkers from pre-SBRT CT images may provide additional key information 
that is readily accessible during treatment planning. This may potentially allow for more aggressive therapy or 
modification of treatment strategies. In general, our study suggests that CT radiomics may carry more predictive 

Figure 3.  Box plots for the two statistically significant radiomic features found to be associated with local failure. The p-values 
shown have been corrected for multiple hypotheses testing using the Bonferroni method.

Figure 4.  Benchmark results for the randomized control data. AUC values are compared between the real SBRT data and the 
random control data, for a range of chosen principal components, k. AUC values were found to be statistically significant for 
1 � k � 6, however models developed based on the real SBRT data with k � 7 principal components were found to be statistically 
no better than random guess.

Phys. Med. Biol. 64 (2019) 025007 (9pp)
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power in the identification of local SBRT failures, rather than non-local failures. This finding is supported by 
both univariate and multivariate analyses.

Huynh et al (2016) first investigated the prognostic value of pre-SBRT CT radiomic features. They evalu-
ated overall survival (OS), distant metastasis (DM), and locoregional recurrence (LRR) as clinical endpoints 
for stage I–II NSCLC patients, and concluded that radiomic features may be significantly more predictive than 
conventional imaging metrics (e.g. tumor volume). Li et al (2017a) similarly found radiomics data derived from 
planning-CT images demonstrated prognostic value for recurrence following SBRT. Their study included stage 
I–II NSCLC patients and investigated OS, recurrence-free survival (RFS), and locoregional recurrence-free sur-
vival (LR-RFS). Their findings indicated that statistical modeling of these endpoints based on clinical data gener-
ally improved with the addition of radiomic features. Our results are consistent with both of these studies, as we 
found cancer recurrence to be more associated with radiomics data, rather than conventional imaging metrics, 
such as tumor volume.

Following our univariate analysis, Homogeneity 2 and Long-Run-High-Gray-Level-Emphasis were both found 
to be statistically significant in differentiating the LF(+) cohort from the LF(−) cohort (figure 3). None of the radi-
omic features were able to differentiate F(+) from F(−), RF(+) from RF(−), DF(+) from DF(−), or nLF(+) from 
nLF(−). These results are reported in figure 3, and imply that the LF(+) tumors were on average more dense and 
homogenous than their LF(−) counterparts.

Overall, there were no obvious pre-treatment patterns within the LF(+) cohort. In fact, these patients seemed 
to be fairly diverse in many non-radiomic factors, including, tumor histology, tumor size, tumor location, and 
fractionation scheme. This trend is consistent with other published studies that have reported worse predictive 
power when modeling SBRT failures based solely on conventional imaging metrics (Huynh et al 2016) or clinical 
data (Li et al 2017a).

Interestingly, Yu et al (2017) had also found that Homogeneity 2 was associated with SBRT mortality rates for 
early stage NSCLC. They developed and validated a CT-based NSCLC radiomic signature by training on a surgi-
cal cohort and testing on an SBRT cohort. In this study, Homogeneity 2 was found to be an independent predictor 
of overall survival (Yu et al 2017). Further, a denser tumor may potentially possess a higher cell count, which 
would imply a larger, more difficult-to-treat tumor burden. A study by Ye et al (2015) supports this claim. They 
found denser tumors to be more likely associated with poorer SBRT outcomes, and reported tumors greater than 
0.7 g cm−3 to be correlated with inferior disease free survival rates (Ye et al 2015).

Figure 5.  Differences in model performance for different SBRT endpoints. Multivariable logistic regression models produced 
maximum AUC values of 0.72 ± 0.04, 0.83 ± 0.03, and 0.60 ± 0.04, for the F(+), LF(+) and nLF(+) endpoints, respectively, when 
using k = 2, k = 3, and k = 10 Principal Components. 

Phys. Med. Biol. 64 (2019) 025007 (9pp)
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Our multivariate results were consistent with the univariate analysis discussed above. As demonstrated in fig-
ure 4, model performance for F(+), LF(+), and nLF(+) was maximized at AUC = 0.72 ± 0.04 , AUC = 0.83 ± 0.03, 
and AUC = 0.60 ± 0.04, respectively. These metrics were produced at k = 2, k = 3, and k = 10 Principal Comp
onents, respectively, and were found to be statistically significant from each other. It is noted that none of the 
RF(+) and DF(+) models were found to be statistically significant when compared to the combined nLF(+) mod-
els. This indicates that modeling location-specific, non-local recurrence was not feasible with our dataset.

As shown in figure 5, the LF(+) model performed better than all other models for (2 � k � 5) Principal 
Components. In this range, the mean LF(+) AUC was found to be 0.81, compared to 0.72 and 0.53 for the F(+) and 
nLF(+) models, respectively. In general, however, the performance of both the LF(+) and F(+) models was found 
to decrease as (k > 5) → 43. When (6 � k � 43) was used, LF(+) and F(+) AUC values were found to be statisti-
cally indistinguishable from nLF(+) counterparts. This is likely a result of having too many degrees-of-freedom, 
and intuitively makes sense.

In contrast to the F(+) and LF(+) results, we were unable to generate strong logistic regression models for the 
RF(+), DF(+), and nLF(+) endpoints. The best-performing nLF(+) model achieved AUC = 0.60 ± 0.04, which 
was significantly worse than the corresponding F(+) and LF(+) models. Overall, these multivariate findings—in 
conjunction with univariate results—suggest that our chosen radiomic features may not be as strongly correlated 
with the underlying mechanisms that are responsible for disease spread. However, these conclusions remain lim-
ited to be tested with a larger sample size. In particular, we note that while this paper demonstrates strong feasibil-
ity of using radiomics to predict local cancer recurrences following SBRT, a limitation of the work is the lack of 
an external test dataset. Further evaluation of the technique using a separate test dataset is the focus of our future 
work. This will provide a more robust assessment of model generalization.

Finally, our multivariate methodology consisted of combining two relatively common feature processing 
techniques: singular value decomposition (SVD) and LASSO regularization. The rational here was as follows. 
Without loss of generality, we chose to work in a truncated SVD basis to reduce the overall degrees-of-freedom 
of the data. This is important as the original data is of high dimension with a relatively small number of samples. 
However, SVD is simply a change-of-basis and therefore likely will not be adequate for feature-selection. Further, 
it is reasonable to hypothesize that some Principal Components are more important than others when consider-
ing a specific target variable. This is where the LASSO operator is beneficial. By implementing regularization in 
conjunction with SVD, the LASSO operator has fewer weight components to optimize during the training pro-

Figure 6.  Model sensitivity to chosen number of principal components, k. A statistically significant AUC difference was found 
between the failure, local failure, and non-local failure models for 1 < k < 6. However, when k � 6, AUC was found to be statistically 
insignificant between all models. In general, the performance of both the failure and local failure models is shown to decrease as 
(k > 5) → 10.

Phys. Med. Biol. 64 (2019) 025007 (9pp)
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cess. We note that D’Angelo et al (2009) successfully used a similar approach to identify gene-gene interactions. 
Our findings indicate that the hybrid SVD-LASSO approach improved model performance and generalization.

5.  Conclusions

For stage I NSCLC, the CT-based radiomic features used in this study may be more predictive of local SBRT 
failure than non-local SBRT failure. This finding is supported by both univariate and multivariate analyses. 
Homogeneity 2 and Long-Run-High-Gray-Level-Emphasis were found to be statistically associated with local 
cancer recurrence. Further, multivariable logistic regression models demonstrated better performance and 
generalization for local failure prediction, relative to non-local failure prediction.
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